A direct derivation of the Dirac equation via quaternion measures

نویسندگان

  • S K Srinivasan
  • C G Sudarshan
چکیده

Quaternion measurable processes are introduced and the Dirac equation is derived from the Langevin equation associated with a two-valued process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quaternionic Formulation of Dirac Equation

ABSTRACT : Quaternion Dirac equation has been obtained from the square root of Klein-Gordon equation in compact and consistent way. Dirac matrices are described as quaternion valued and the Dirac Hamiltonian is considered as Hermitian with real eigenvalues of energy. Dirac spinors and free particle energy solution has been obtained in terms of one component, two-component and four-component Dir...

متن کامل

Dirac-kähler Equation 1

Tensor, matrix and quaternion formulations of Dirac-Kähler equation for massive and massless fields are considered. The equation matrices obtained are simple linear combinations of matrix elements in the 16-dimensional space. The projection matrix-dyads defining all the 16 independent equation solutions are found. A method of computing the traces of 16-dimensional Petiau-Duffin-Kemmer matrix pr...

متن کامل

Iterative algorithm for the generalized ‎$‎(P‎,‎Q)‎$‎-reflexive solution of a‎ ‎quaternion matrix equation with ‎$‎j‎$‎-conjugate of the unknowns

In the present paper‎, ‎we propose an iterative algorithm for‎ ‎solving the generalized $(P,Q)$-reflexive solution of the quaternion matrix‎ ‎equation $overset{u}{underset{l=1}{sum}}A_{l}XB_{l}+overset{v} ‎{underset{s=1}{sum}}C_{s}widetilde{X}D_{s}=F$‎. ‎By this iterative algorithm‎, ‎the solvability of the problem can be determined automatically‎. ‎When the‎ ‎matrix equation is consistent over...

متن کامل

The least-square bisymmetric solution to a quaternion matrix equation with applications

In this paper, we derive the necessary and sufficient conditions for the quaternion matrix equation XA=B to have the least-square bisymmetric solution and give the expression of such solution when the solvability conditions are met. Futhermore, we consider the maximal and minimal inertias of the least-square bisymmetric solution to this equation. As applications, we derive sufficient and necess...

متن کامل

F eb 2 01 1 A Master Equation Approach to the ‘ 3 + 1 ’ Dirac Equation

A derivation of the Dirac equation in ‘3 + 1’ dimensions is presented based on a master equation approach originally developed for the ‘1+ 1’ problem by McKeon and Ord. The method of derivation presented here suggests a mechanism by which the work of Knuth and Bahrenyi on causal sets may be extended to a derivation of the Dirac equation in the context of an inference problem.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996